NSS Roadmap to Space Settlement Student Art Contest

The National Space Society (NSS) is looking for student artists to create illustrations for the NSS Roadmap to Space Settlement. Submitted artwork should realistically illustrate at least one of the Milestones in the Roadmap document.

All students at any grade level between the ages of 10 and 25 are eligible. Submitted artwork is intended to be used by NSS to promote a future of humans living and working in space and may be used on the NSS website, Ad Astra magazine, and/or a future calendar.

The due date is April 22, 2013. More information.

Life in outer space? 37-year-old NASA project depicts how leading minds of the time dreamed about colonizing space

The New York Daily News published this story on December 13, 2012.

The story quotes two National Space Society Directors: Mark Hopkins and Al Globus.

“Amazing artwork from the 1970s shows scientists’ vision of creating settlements in space. They got most of it right, say experts. But funding for the massive endeavor remains a large hurdle.”

Read the story at: http://www.nydailynews.com/news/national/amazing-1970s-artwork-envisions-colonized-space-article-1.1219511

See higher resolution versions of all the art work on the NSS website: http://www.nss.org/settlement/nasa/70sArt/art.html

Image: Cutaway view of the Stanford Torus space settlement design for 10,000 inhabitants. From Space Settlements: A Design Study, NASA SP-413 (1977), online at http://www.nss.org/settlement/nasa/75SummerStudy/Design.html.

Paths to Space Settlement

The latest paper in the NSS Journal of Space Settlement is “Paths to Space Settlement” by Al Globus.


A number of firms are developing commercial sub-orbital launch vehicles to carry tourists into space. Let’s assume they attract many customers and become profitable. The next, much more difficult, step is to develop orbital tourist vehicles and space hotels to go with them. These hotels will require maids, cooks, waiters, concierges and so forth, some of whom may decide to stay, becoming the first permanent residents in space. A luxury hotel plus good medical facilities could provide low-g living for wealthy disabled individuals where wheelchairs and walkers are unnecessary.

In the meantime, humanity could choose to solve, once and for all, our energy and global warming problems by developing space solar power. To supply a substantial fraction of civilization’s 15 TW energy consumption would require an extremely large number of launches, the ability to build extremely large structures in orbit, and eventually tapping the Moon and Near Earth Objects (NEOs) for materials to avoid the environmental cost of mining, manufacturing, and launch from Earth.

The first step towards NEO mining is to locate them. As a large fraction, roughly 30%, of these will eventually impact Earth, locating and characterizing the NEO population is essential for planetary defense. Furthermore, it would be prudent to deflect a representative set of non-dangerous NEOs to insure that we know how to do it should a NEO on an imminent collision course with Earth be found. A representative set would include at least one of each major type of NEO since these have different physical properties and thus may require different deflection techniques. This would give orbital space settlement designers a known source of materials and the means to move them if necessary.

If these paths are taken, each step of which is justified in its own right, humanity will have excellent launch, small orbital living facilities, the ability to build large objects in orbit, and access to extra-terrestrial materials — most of what is needed to realize Gerard O’Neill’s orbital space settlement vision. At that point, some extremely wealthy individuals may build themselves a small orbital habitat so they live only with like-minded individuals. The first, and most difficult, orbital space settlement will be built.

These are paths to space settlement.

Full paper.

Moon Mines: Visionary or Senseless?

Editorial by Al Globus, December 2011

Do lunar mines make sense? The answer depends on what you want to do in space. If what you want is something close to what we have now: a booming commercial communication satellite business and government programs for science and exploration, then no. Lunar mines built entirely with tax dollars are expensive and unnecessary. On the other hand, if you see further than a few years ahead, if you see civilization, humanity, and Life itself expanding into space, if you see large scale industrialization, commercialization and settlement of space, then lunar mines are of enormous importance. The interesting thing is, the second vision will probably cost the taxpayer a lot less and deliver much greater value to the people of Earth.

First, let us consider what lunar mines can supply a growing civilization in space:

1) Shielding mass. Our atmosphere protects us from the intense radiation in space. For those who seek to spend long periods in space, particularly beyond Earth’s protective magnetic field, radiation shielding is a must. To mimic the atmosphere, roughly 10 tons/square-meter is necessary. The Moon is ideally situated to supply these bulk materials.

2) Rocket propellant. Today’s rockets are propelled by chemical reactions. The highest performance propellant is hydrogen and oxygen, which combine to produce water and the energy and thrust necessary to travel in space. Most of the weight, roughly 90%, of this propellant is oxygen. The Moon has very large quantities of oxygen tied up in surface materials.

3) Water. A great deal of money is spent today bringing water to the International Space Station (ISS). The same oxygen that supplies most of the mass for rocket propellant can be used to make water. There are also large quantities of water in the craters at the lunar poles where the Sun never shines.

4) Metals. Lunar materials returned by the Apollo astronauts contain large quantities of titanium, aluminum, iron and other metals. These metals can supply materials for large space structures, including habitats.

5) Silicon. Silicon and metals from the Moon could be used to build the space segment of Space Solar Power (SSP) systems. These satellites would gather energy in space and transmit it wirelessly to the ground. If successfully developed, SSP could supply massive quantities of clean energy to Earth for literally billions of years. A recent paper published in the NSS Space Settlement Journal [A Contemporary Analysis of the O’Neill – Glaser Model for Space-based Solar Power and Habitat Construction. Peter A. Curreri and Michael K. Detweiler. December 2011.] suggests that using lunar materials for the SSP satellites requires more up-front capital than ground launch but begins generating profits much sooner.

6) He-3. Over billions of years the solar wind has implanted He-3, an isotope that is particularly well suited to fusion power, into lunar surface materials. This could be mined, brought to Earth, and used in future fusion power plants.

Thus, a vigorous lunar mining system could be part of a system to deliver energy to Earth, build large structures in space, and even provide radiation protection, water and oxygen to those who want to spend significant time in orbit. Developing lunar mines will be an enormous effort and would cost huge amounts of taxpayer money if it were done the same way Apollo, the Space Shuttle, and the ISS were developed. Fortunately, there is another way.

In the 1960s the U.S. government provided modest subsidies to start up the communication satellite business. Today, communication satellites are a $250 billion/year global business producing yearly tax revenue far greater than the subsidies.

The U.S. government is currently providing subsidies to help develop private, commercial launch vehicles. The cargo versions are almost complete. Two launchers, one of which has flown, were developed at a small fraction of the usual cost for government launcher programs. The human launch versions are being developed by the commercial crew program, which was budgeted for $6 billion and scheduled to develop two or three vehicles that could deliver astronauts to the ISS by 2015. [The budget for the first year was cut from $850 million to $406 million. This is expected to delay the first flight by a year or two.] By contrast, the all-government Space Launch System (SLS) is not scheduled to fly astronauts until 2021 and is estimated cost $40 billion to develop. Although the SLS is much larger, variants of the commercial vehicles may approach or even exceed SLS performance sooner and at much less cost. [The first SLS version is expected to place up to 70 tons into Low Earth Orbit (LEO); a later version may lift up to 130 tons. The Falcon Heavy, due to launch in late 2012, is expected to place up to 50 tons in LEO. SpaceX has also proposed a larger version of the Falcon that could lift 150 tons to LEO; it is projected to take five years to develop at a total cost of $2.5 billion.]

Thus, the evidence suggests that reorienting our space program to support commercialization and industrialization of space, as opposed to 100% government missions, may produce far greater results at much less cost. Lunar mining could be a major component of such space industrialization. There is already at least one commercial company that intends to mine the Moon. Perhaps we should support it.

NSS Space Settlement Journal

The NSS Space Settlement Journal has commenced publication this month, beginning with two new papers:

A Contemporary Analysis of the O’Neill – Glaser Model for Space-based Solar Power and Habitat Construction by Peter A. Curreri, NASA Marshall Space Flight Center, and Michael K. Detweiler, Amadeus Consulting

Abstract: Solar Power Satellites, SPS, is a technology that promises unlimited energy free from chemical pollution and green house gas emissions. First expounded by Peter Glaser in 1969, the economic viability was in doubt primarily due to Earth launch costs. Concurrently Gerard O’Neill demonstrated that using 1970’s technologies, SPS could be economically viable if space based materials and labor were utilized, but only after large investments in in-space infrastructure. More recently the O’Neill – Glaser model was reevaluated finding that optimization of space worker habitat size results in substantially improved economics. This paper compares the optimized O’Neill – Glaser economic model with that of Earth launched SPS for the classical electrical power scenario and for the more ambitious scenario to arrest global climate change. The conclusion is that for the energy levels necessary to mitigate global increases in CO2, Earth launched SPS are not economically viable (even with more advanced technologies and more optimistic decreases in launch costs), however with this increase in energy demand the space derived SPS become even more economically compelling and in addition enhance human survival probabilities by enabling a substantial human population to live in space.

The Space Grid: Sun-synchronous orbiting SBSP Satellites with Equatorial orbiting Reflector Satellites for Earth and Space Energy by Royce Jones

Abstract: The development of an economically viable space-based solar power (SBSP) system is critical to the Earth’s future and for future space development. PowerSat technology is also critical to supporting sustainable private and government space ventures, including space lift, space exploration and space infrastructure development. Such a system would greatly expand the need for space lift capability from small reusable launch vehicles for SBSP satellite maintenance to large expendable launch vehicles for deploying GW class SBSP satellites into orbit. The technology needed for SBSP is also needed for in-space solar electric transportation systems needed for space colonization as the technology is the same. The hope has been that gradual improvement in photovoltaic or other technologies such as thermal systems would solve the mass to orbit problem for SBSP systems. However, this in itself does not appear sufficient to make SBSP economically viable. This paper presents a new architectural option for SBSP using a Sun -synchronous orbit (SS-O), wireless power transmission (WPT) and a space power relay (SPR). This new concept is called The Space Grid. The Space Grid relies on the use of two separate satellite constellations. The power satellite (PowerSat) constellation is placed in SS-O dusk to dawn orbit at 800km and has access to constant sunlight and is used to produce the power. The Equatorial reflector satellite (ReflectorSat) constellation is in a 4,000km equatorial orbit and is used to distribute the power to the rectenna on the Earth’s surface. The power is produced by the PowerSats in SS-O and beamed to the ReflectorSats in equatorial orbit and then bounced to the rectenna on the ground. This combination allows for the production and distribution of power to the Earth’s surface without the problems normally associated with non-Geostationary (GEO) PowerSat concepts and without having to place the PowerSats in GEO. The Space Grid reduces the mass of a PowerSat transmitter by approximately 67% by moving it closer then past GEO concepts and allows for higher power levels and therefore much smaller (60%) and less costly rectenna on the ground and reduces the minimum size from 5GW to only 2GW allowing quicker deployment of space energy to solve the Earth’s energy problems. WPT transmission could be microwave or laser but for this paper microwave will be used for easier comparison with past concepts.

The NSS Space Settlement Journal is an online, high-quality, peer-reviewed journal. NASA Liaison for the Journal is Simon “Pete” Worden, NASA Ames Research Center. Editors of the Journal are:

Al Globus, San Jose State University, Editor in Chief
Fred Becker, National Space Society
Anita Gale, International Space Settlement Design Competition
Peter Garretson, National Space Society
Mark Hopkins, National Space Society
John Lewis, University of Arizona
Scott Pace, George Washington University
Joseph Palaia, 4Frontiers Corporation

See Call for Papers if you are interested in contributing to the Journal.

Is an Earth Trojan Asteroid the Logical Target for the "Flexible Path"?

Trojan Asteroid 2010 TK7
Asteroid 2010 TK7 is circled in green.
Image Credit: NASA / JPL-Caltech / UCLA
Scientists using the Wide-field Infrared Survey Explorer (WISE) have discovered the first Trojan Asteroid in Earth orbit. Trojans orbit at a location in front of or behind a planet known as a Lagrange Point.

A video of the asteroid and its orbit at the Lagrange point can be found here.

Martin Connors of Athabasca University in Canada is the lead author of a new paper on the discovery in the July 28 issue of the journal Nature.

Connors notes that:

These asteroids dwell mostly in the daylight, making them very hard to see. But we finally found one, because the object has an unusual orbit that takes it farther away from the sun than what is typical for Trojans. WISE was a game-changer, giving us a point of view difficult to have at Earth’s surface.

TK7 is roughly 300 meters in diameter and traces a complex motion around SEL-4 (Sun Earth Lagrange point 4). The asteroid’s orbit is stable for at least the next 100 years and is currently about 80 million kilometers from the Earth. In that time, it is expected to come no closer that 24 million kilometers.

The obvious question is whether this is the logical destination for NASA’s Flexible Path manned asteroid mission? The Lagrange 4 point (SEL-4) is a logical way station on the Solar System exploration highway. Other NEO asteroids that have been identified as possible targets are few and much more difficult to reach and return than an asteroid located directly at SEL-4 would be. An asteroid located there could well be the target of opportunity that opens manned exploration of the Solar System in an “easy” mode. Unfortunately, Asteroid 2010 TK7 would not serve as such a target because it travels in an eccentric orbit around SEL-4 so far above and below the plane of Earth’s orbit that it would require very large amounts of fuel to reach.

NEOWISE is the program for searching the WISE database for Near Earth Objects (NEO), as well as other asteroids in the Solar System.The NEOWISE project observed more than 155,000 asteroids in the main belt between Mars and Jupiter, and more than 500 NEOs, discovering 132 that were previously unknown.

ISDC 2011 Video Presentations

Presentations from the 2011 NSS International Space Development Conference in Huntsville, Alabama.

Jeff Greason

Jeff Greason, President of XCOR Aerospace. Keynote Address at the Awards Banquet: A Settlement Strategy for NASA. This talk is widely regarded as a major statement in the field of space policy. 42 minute video.

Robert Bigelow

Robert Bigelow, President of Bigelow Aerospace, dedicated to developing next-generation crewed space complexes to revolutionize space commerce and open up the final frontier, and recipient of the 2011 NSS Space Pioneer Award for Space Development. Keynote Address at the Governors’ Gala. 32 minute video.

Owen and Richard Garriott

Owen and Richard Garriott. Father and son astronauts. Owen Garriott spent 60 days aboard Skylab in 1973 and 10 days aboard the Space Shuttle in Spacelab-1 in 1983. His son Richard Garriott is a video game developer and entrepreneur who funded his own 12-day trip flying on Soyuz to the International Space Station in 2008. 42 minute video.

Adam Harris

Adam Harris: SpaceX and the Future. Adam Harris is Vice President for Government Affairs, Space Exploration Technologies (SpaceX). SpaceX President Elon Musk is recipient of the 2011 National Space Society Space Pioneer Award for Business Entrepreneur. 24 minute video.

ISDC Awards

NSS Awards Ceremony: 2011 ISDC Awards Ceremony in Huntsville, Alabama, May 21, 2011. 43 minute video.

ISDC 2011 Keynote Speech – Jeff Greason – A Settlement Strategy for NASA

Jeff Greason’s speech at the Awards Dinner at the 2011 NSS International Space Development Conference is being widely regarded as a major statement in the field of space policy. A video of the speech is now on the NSS website.

Greason is President of XCOR Aerospace and was a member of the Augustine Committee (Review of U.S. Human Space Flight Plans Committee) established by the White House in 2009. He began his talk by defining the differences between goals, strategies, objectives, and tactics.

“Between having a goal and having tactics, you have to have a strategy — and we don’t. Until we have one, we’re going to continue to flail.”

We do have a goal, says Greason. Although it’s not widely recognized, it can be found in nearly every major policy document and commission report over the last 25 years. The Augustine Report, for example, “concludes that the ultimate goal of human exploration is to chart a path for human expansion in to the solar system.” But none of them quite dare use the “S” word, even though that’s what they are really talking about — [whisper] settlement. The reason they don’t dare use the word is they are not sure we can do it.

This point is illustrated in one of Greason’s slides about the lack of a strategy for settlement:

Absense of strategy.
Absence of strategy.

Greason then laid out — nondogmatically, as one of many possible approaches — his ideas for a possible strategy. “The purpose of the initial human outpost is not to be there and look cool. It is not to unfurl flags and take pretty pictures, and it is not the holy grail of science, although we will get all of those things. It’s to make gas.” Basically, each destination has the resources to make propellant to help reach the next destination — a strategy he calls “Planet Hopping.”

Greason includes the following elements of a strategy for space settlement:

* The key is to realize that cost per human being in space MUST constantly decrease in order to succeed.

* Each capability we add MUST be designed from the outset to transition to a private sector supported activity. Only in that way can we add new capabilities with constant budget.

* Each step forward must make maximum use of in-situ resources, both to lower cost of operations and to provide low cost resources to support next steps. This allows for exponential growth over time rather than linear.

Greason also pointed out that we have to realize that NASA’s budget is not going to go up. However, he added “It’s my belief that if we pursued this the right way, we actually could afford to do this, all the way out to the first landings on Mars, for the kind of budget NASA’s getting now.”

But Greason warned that if we continue on the current path, without a strategy, “we’re going to build a big rocket, and then we’re going to hope a space program shows up to fly on it. And in my opinion, that strategy — the strategy of default — is going to result in the end of the NASA human spaceflight program.”

Constructing Cislunar Infrastructure – ISDC 2011

ISDC conference report by Dave Fischer

If those who think Mars is sufficiently hard to get to and remain to settle are correct, or those who think that it would be a terrible mistake to go to Mars and return leaving only flags and footprints are correct, then we are, in fact, not going to Mars anytime soon.  So where are we going?  And why are we going?

The current Flexible Path suggests that the manned exploration of an asteroid is a reasonable goal.  It avoids the problems of deep gravity wells, and does create launch vehicles and spacecraft.  However, as critics point out, this merely repeats the standard process of throwing away everything except the manned return capsule.  What might be done to create a permanent space faring infrastructure?

Why we are going is settlement.  That is the conclusion from reading policy statements, both formal and informal, from the past 10 years.  Beginning with the Vision for Space Exploration statement in 2004, up through the 2010 statement by the Obama administration, these policy statements all point toward the unspoken word, “settlement”.  Permanent occupation of space that exploits the economic resources available is the goal.  Now, what are the initial strategic steps, and what are the tactics to implement them.

At the International Space Development Conference (ISDC 2011), two proposals were made that result in permanent cislunar infrastructure: one by Dr. Paul Spudis and one by Stephen D. Covey.

Dr. Spudis advocated the conservative approach.  During Friday’s luncheon, Dr. Spudis presented “Can We Afford to Return to the Moon” (see the paper in the NSS Lunar Library by Spudis and Lavoie Mission and Implementation of an Affordable Lunar Return – pdf)

Spudis and Lavoie argue that over a period of roughly 16 years, employing a series of 31 missions, that a robotically built water mining operation at the South Pole of the moon, later employing humans living at the base to repair and maintain the equipment, would yield the following:

1.  Commercially valuable water for use as Lox/H2 fuel on the Moon and within cislunar space, sufficient to sustain the operation, with excess available for sale.

2.  Reusable Landers and Rovers.

3.  Permanent human occupation of the Moon.

4.  Routine access to all space assets within Cislunar space, including communications, GPS, weather, remote sensing and strategic monitoring satellites.

In essence, we create a “transcontinental railroad” with permanent settlements at various points between the Earth and the Moon.  The critical element is that this can be accomplished with the $7 Billion annual budget likely to be given NASA for the foreseeable future.  The projected cost of a Flexible Path mission to an asteroid has been estimated at $80 Billion, while the Cislunar project would cost $77 Billion.

The second proposal is far more radical: “Asteroid Capture for Space Solar Power”.  Here, Stephen D. Covey argued for a purely commercial venture to capture the asteroid 99942 Apophis, mine it for metals, silicon and oxygen, build Solar Power Satellites (SPS) and sell the power to utility companies on Earth.  An initial capital base of $30 Billion would be required.  But by the end of the sixth or seventh year of operation the enterprise would be at break even, and eventually generate $20 Billion per year in revenue.

At the end of eight years, 15 Solar Power Satellites would be in operation generating $20 Billion per year in revenue.  And only 10% of the asteroid would have been processed.  A total of 150 SPSs could be manufactured before another asteroid was needed.

The end result of this initial eight-year plan would be:

1.  A fully shielded (3 meters of slag from the mining operation) habitat for 8,000 people.

2.  Space based factory capable of producing 8 SPSs per year.

3.  Space infrastructure created by commercial space companies to support the operations.

4.  3-4% of Earth’s electrical needs supplied by Space based Solar Power

At the end of production, with 150 Satellites in operation, more than a third of Earth’s electrical needs would be supplied by Space Based Solar Power.

And who is to suggest that we cannot do both of these ventures at the same time?

New International Law Textbook Discusses Lunar Real Estate

A new international law textbook contains an article on “Space Settlements, Property Rights, and International Law: Could a Lunar Settlement Claim the Lunar Real Estate it Needs to Survive?” by Alan Wasser and Douglas Jobes. Wasser, a former CEO of the National Space Society, argues in favor of “Land Claims Recognition” to help fund lunar settlements.

If and when the Moon and Mars are settled in the future through other incentives, the nations of Earth will eventually have to recognize these settlements’ authority over their own land. But to create an incentive now, governments would need to commit to recognizing that ownership in advance, rather than long after the fact.

Land claims recognition legislation would commit the Earth’s nations, in advance, to allowing a true private Lunar settlement to claim and sell (to people back on Earth) a reasonable amount of Lunar real estate in the area around the base, thus giving the founders of the Moon settlement a way to earn back the investment they made to establish the settlement.

The 42-page article was originally published in the Journal of Air Law and Commerce, Vol. 73, No. 1, 2008. The full article in PDF format is available on the NSS website as part of the NSS Lunar Bases and Settlement Library (“Additional Papers” section).

The textbook, International Law: Contemporary Issues and Future Developments, edited by Sanford R. Silverburg, was published in March 2011 by Westview Press.