Enterprise In Space: A Tutor for Every Child, video presentation for the MacArthur Foundation 100&Change Grant.

The President of the National Space Society describes how many children around the world lack access to a basic education and how ValueSpring Technology is developing an artificial intelligence that will be a tutor for each person, thus helping to bring about the world that Gene Roddenberry imagined, where everyone is able to contribute to his or her full potential. This project is being submitted in competition for a $100 million MacArthur Foundation grant to fund a single proposal that promises real and measurable progress in solving a critical problem of our time.

Water-Propelled Spacecraft Prepares for Takeoff: The Cislunar Explorer Kickstarter

The National Space Society is part of the NASA CubeQuest Challenge’s Cislunar Explorers team, whose goal is to demonstrate the first-time use of electrolyzed water as propellant and demonstrate a new optical navigation capability. All designs, software, techniques, even the lessons we learn will be posted on the internet, open-source for anybody to use.

This project not only demonstrates technologies critical to opening space to everybody, it is providing the knowledge to do it too. For more information, see the NSS Cislunar Explorers Project webpage.

If you’d like to be a part of this exciting project by donating, see the Cislunar Explorer Kickstarter page. If our team wins an in-space prize ($1.5 million is slated for the teams attaining lunar orbit), NSS will get a share of the prize equal to the donations that come through NSS. In effect, your donation will get twice the bang for the buck! In order for this to happen, we need one additional step so we can track how much in donations come through NSS (the Kickstarter site won’t track that). Just send an email to dean.larson@nss.org stating the amount of your pledge. No other information is required.

National Space Society Urges Renewed Commitment to Competition and Reusability Following Falcon 9/Amos 6 Incident

At about 9:07 AM September 1, 2016, during preparation for a routine static fire test of the SpaceX Falcon 9 on Space Launch Complex 40 at Cape Canaveral, an explosion resulted in the loss of both the F9 and the satellite payload. At this time there are no reports of injuries in the incident. Although Elon Musk has reported that the explosion “Originated around [the] upper stage oxygen tank” the cause remains unknown.

“Clearly this incident is a setback for SpaceX,” said Dale Skran, NSS Executive Vice President. “However, it emphasizes the wisdom of NASA in supporting multiple cargo and crew carriers to the International Space Station. NASA deserves the highest praise for holding fast to supporting multiple providers with dissimilar vehicles to provide both competition and redundancy. NSS looks forward to the return to flight of the Orbital ATK Antares rocket hauling cargo to the ISS later this year, and welcomes the addition of Sierra Nevada’s Dreamchaser to the list of ISS cargo haulers.”

With eight launches to orbit so far this year, SpaceX has already exceeded its previous record for successful launches in a single year. While launching commercial satellites to geosynchronous orbit and cargo to the ISS this year, SpaceX demonstrated the landing of an F9 first stage five times, one with return to launch site and four times with a landing on a drone ship. “Dramatic innovation such as SpaceX has been pursuing entails risk,” said Bruce Pittman, NSS Senior Vice President. “And the recent incident exemplifies that risk. However, NSS is confident that SpaceX will discover the root cause of the problem, evaluate other potentially catastrophic failure modes and return to flight with a robust system. NSS strongly supports SpaceX’s efforts to develop reusable vehicles and lower launch costs.”

SpaceX is one of two providers selected by NASA to ferry crews to the ISS. Its capsule, the Dragon 2, which is designed to land propulsively, has the capability of allowing the crew to escape a pad explosion. David Cheuvront, member of the NSS Policy Committee and former NASA Safety Engineer for Orion and the Commercial Crew Certification Strategy Team said, “If there had been a crewed Dragon 9 on the pad instead of the Amos 6 satellite, there is good reason to believe that the crew and capsule would have survived.” Elon Musk agreed, saying “This seems instant from a human perspective, but it [is] really a fast fire, not an explosion. Dragon would have been fine.”

“The payload lost during this incident was not a high-value NASA payload. This underlines the wisdom of NASA using commercial launch services that fly many customers’ payloads frequently rather than NASA owned rockets that fly rarely. There is every reason to expect that by the time crews fly to the ISS on an F9, a high level of reliability will have been demonstrated,” said Mark Hopkins, Chair of the NSS Executive Committee.

National Space Society names Ohio University “Center of Excellence in Space Solar Power and Power Beaming”

This article was originally published here by The Post, a student publication at Ohio University, and is reproduced with permission.

By Lauren Fisher

To Ohio University professor Don Flournoy, solar power used to be little more than a fantasy out of a science fiction novel. Now, that fantasy has become a reality — and one for which OU has received special recognition.

The National Space Society named the university a “Center of Excellence in Space Solar Power and Power Beaming” during the organization’s annual International Space Development Conference in Puerto Rico in May.

The NSS is an international, independent non-profit organization “dedicated to the creation of a spacefaring civilization.” It supports space expedition both at home and abroad, with the mission of mankind someday living and working “beyond the Earth.”

The society lauded OU students and faculty for their progress in solar power, as well as a process known as power beaming, by which solar energy is captured and converted into a renewable form of electricity.

Flournoy, Scripps College of Communication and School of Media Arts & Studies professor emeritus, found his interest in solar power in the 1990s while serving as the education vice president of the Society of Satellite Professionals International Board of Directors.

Flournoy, having introduced the first satellite communication courses at OU, is also the founder the Online Journal of Space Communication, a cross-discipline scholarly publication hoping to advance the study of space communication.

“By 2010, the idea of reducing dependency on fossil fuels by using (the) Sun’s energy taken directly from space was gaining momentum, and had become a priority mission of the National Space Society,” Flournoy said in a news release. “With my communication background, I understood that sun’s energy was already being used by space satellites to power the microwaving of voice, video and data to and from space.”

Using OU’s Game Research and Immersive Design lab, students and faculty have been able to create visualizations and animations that could prove instrumental in shaping the future of solar energy.

Alice Hoffman, an NSS director and program manager for the NSS Enterprise in Space initiative, commended the university and noted in the news release that being named a Center of Excellence signifies that an organization provides those interested in the field with the resources necessary to better understand the often-complicated subject.

Hoffman also praised the work of Lorna Jean Edmonds, Ohio vice provost for global affairs and International Studies.

A close working relationship with National Space Society Enterprise in Space is more important than ever for OU students. A number of student’s experiments in solar energy and power beaming will be carried onboard a spacecraft in the upcoming years, Flournoy said.

Although harnessing the energy of the sun tends to be an expensive and often-difficult venture, Flournoy said with continued development, it has the potential to be one of earth’s principle renewable energy sources.

“We feel this is a very important message to get out as the more people know about it and the more progress the government sees, the better off we will be,” Hoffman said in the release. “I am very concerned about climate change, and (solar power) is a lasting solution.”

To Flournoy, like many others, the world of solar power is more exciting than ever, with new technology paving the way for progress that could revolutionize the world of energy.

“We used to read about Buck Rogers being propelled into space above us. And now we can do that,” Flournoy said in the release. “Now we realize that the sun is a much cleaner, long-term solution to the production of electrical power. This Center of Excellence designation is a nod to the work we have done at Ohio University to help make this a reality.”

NSS and Enterprise in Space Lauded for Contributing to the Future of Education

This article was originally published here on Engineering.com and reproduced with permission.

There are currently over 100 million students waiting to become the next generation of engineers, rocket scientists and astrophysicists to get humans from Earth to Mars and beyond, but they may not be able to fulfill their potential simply due to a lack of access to a quality education. According to a study from UNESCO, more than 100 million young people worldwide, 62 to 66 million of whom are girls, are not attending school of any kind. Hundreds of millions more are unable to afford good-quality or safe schools.

However, groups like OneWeb and ONE are aiming to provide universal Internet access worldwide by 2020, greatly expanding the ability to use educational resources online. Nevertheless, Internet access does not guarantee a quality education.

To address this problem, imagine if there was a massive, free online academy where any student or teacher with broadband could learn science, technology, engineering, art and math (STEAM) from educators around the globe, as well as the greatest minds in their fields, including NASA scientists, cutting-edge researchers and NewSpace engineers? On top of that, what if they had an artificially intelligent tutor and mentor to guide them in their learning?

That’s what Enterprise In Space (EIS) is trying to achieve, and it all begins with one giant class science project: the design, launch and recovery of a 3D-printed spacecraft that will orbit Earth with 100+ active and passive student experiments and a link to an AI to help the students run them and analyze their data.


To pull it off, EIS, a nonprofit program of the National Space Society, has drawn up the plans, put together an expert team of space veterans, raised $27.5 million in in-kind donations and partnered with some of the biggest names in the NewSpace industry. Now, all it needs is $32 million to put the plan in motion and set a course for the stars.

NewSpace Education

To engage students in STEAM education and space exploration, EIS is hosting contests and enlisting students from all grade levels—kindergarten all the way through postgraduate education—to design experiments to be flown aboard a 3D-printed orbiter dubbed the NSS Enterprise. From now until the spacecraft is launched in 2019 or 2020, the winning experiments will be used as the basis for online curricula and lesson plans to populate EIS’ massive open online course platform, known as the EIS Academy.

Once launched, the NSS Enterprise will orbit our planet for up to one month, carrying not only the experiments, but also Ali, an advanced artificial intelligence that will manage the active experiments. Ali will also serve as the voice of the spacecraft, allowing student teams on Earth to engage with the AI platform using natural language. In fact, Ali will eventually act as a personal tutor to students from around the world.

NSS_Engineering.comThe EIS Academy will be overseen by EIS Education Manager Lynne F. Zielinski, one of the most decorated space educators in the world, who has mentored students to fly experiments in space for the past 26 years. In speaking with ENGINEERING.com, Zielinski said that the program will not only give students the tools to become engineers, but EIS will train teachers as well. “The whole wrap around here is two-fold: engineering the over 100 student experiments to be sent into space and to tap into the processes necessary to create STEAM learners,” Zielinski explained. “To do that, teachers need training so they can excite the students. A lot of teachers are not necessarily science, technology, engineering or math teachers, and these teachers tend to feel intimidated or shy away from teaching in these disciplines, like art, history or elementary school teachers. They really don’t have an engineering background, so two of the things we want to do is show them that what they teach relates to the technical fields and give them some of the basic engineering knowledge needed to help their students design experiments to fly in space. In short, we want to give them confidence!”

She continued, “When we show them how easy it is—and it really is very easy if our engineering is done right—they feel confident enough to teach their students how to design their experiments. That’s the key and one of the things that makes us so different from other programs. When they’re concentrating on STEM and not STEAM, they’re only focusing on things that are scientifically significant or interesting. We’re not. We’re saying it can be very, very simple. It can include some artwork, some music, anything. We encourage people to be bold and step out of the perceived norm and their comfort zone.”

Higher Level Education

The EIS Academy will serve not only elementary, middle and high school learners, but also university, doctorate and postdoctoral students as well. EIS will host competitions seeking experiments dedicated to advancing the state of the art in 10 areas. The contest teams will utilize and submit proposals within the Enterprise Centers for Excellence (ECE), where expert researchers and cutting-edge businesses will curate an extensive database of knowledge related to exciting topics such as space-based additive manufacturing, space-based solar power, stem cell research and more.

Zielinski explained that the additive manufacturing, space solar power and orbital space debris mitigation and remediation ECEs are already well developed. Two competitions are nearly ready to launch and will see students at the university and postdoc level participating with established NewSpace businesses to pursue some very challenging scientific concepts.

In the case of the space solar power ECE, hosted in partnership with Ohio University, SPACE Canada and the Canadian Space Society, the winning team will actually send an experiment aboard the NSS Enterprise that will test the ability to generate solar power in space, such as collecting sunlight aboard the spacecraft and delivering power wirelessly to a freeflyer for its mission orbiting Earth.

Eight of the projects that will serve as the basis for the Enterprise Centers for Excellence. (Image courtesy of EIS.)

In the case of the orbital space debris mitigation and remediation ECE, the team will work with Nicola Sarzi-Amadè and Global Aerospace Corporation to utilize the company’s Gossamer Orbit Lowering Device to deorbit debris in space.

Zielinski described an ECE as “a place where a wide variety of groups of people with the same interest and different disciplines can all come together and work together on that topic with the best information that we can get our hands on.” Features of the ECEs include:

  • A resource area populated with numerous papers that have all been vetted as the best resources associated with a given topic
  • A cyber library (“Cybrary”)
  • An online journal that publishes juried and approved research and student papers
  • An ephemeral board in which cross-curriculum visitors can present ideas related to the topic
  • A question-and-answer area with access to STEAM mentor

Ali the Artificial Intelligence

While students will be able to monitor the progress of their experiments aboard the NSS Enterprise, the complete EIS Academy will be made open to the public, with students and teachers anywhere able to rely on Ali as a personal tutor and mentor.

In many school systems around the world, students have new teachers with every grade level. In turn, the knowledge, interests and learning style of a student will have to be picked up by new teachers year after year. Teaching coursework for different student learning styles is difficult. Ali, however, will be able to accompany every student as they grow and act as a tool for teachers to address the needs of their classroom more quickly.

At the same time, students will also be able to access Ali on their own time. That way, any topic that isn’t addressed in class can be addressed by the AI. Additionally, Ali can direct the student to a teacher in the EIS Academy who can provide him or her additional topic information in greater depth.

Ali will be built by Value Spring Technology using the firm’s enterpriseMind platform, an AI capable of deciphering and contextualizing natural human language similar to the way that the human mind works. Thus, students and teachers will be able to speak with Ali naturally. More importantly, Ali will be able to adapt to the student, learning his or her needs and modifying the teaching style as the student develops. In an upcoming article, Bill Doyle, one of the inventors of enterpriseMind, will provide greater detail about exactly how the technology works.

3D Printing a Spacecraft

The design for the NSS Enterprise is no ordinary spacecraft. Chosen through a crowdsourcing campaign, the winning submission was from Stanley Von Medvey. The design is meant to be inspired by science fiction, and once it goes into orbit, it will be the first spacecraft with the name “Enterprise” flown in space. The spacecraft’s sci-fi geometry, however, is unlike any typical satellite or shuttle, opening up new manufacturing opportunities and engineering challenges.

The science fiction-inspired design for the NSS Enterprise was chosen through a crowdsourcing contest. (Image courtesy of EIS.)
The science fiction-inspired design for the NSS Enterprise was chosen through a crowdsourcing contest. (Image courtesy of EIS.)

Made In Space, famous for now installing two 3D printers aboard the International Space Station, has been selected as the prime contractor for the construction of the NSS Enterprise. The company will leverage its expertise with additive manufacturing to 3D print the airframe of the spacecraft. To do so, Made In Space will use a modular approach, breaking the design down into individual, components before printing them and assembling them into the complete NSS Enterprise.

This method will both allow the team to print the pieces of the spacecraft on a smaller 3D printer and give the EIS team the ability to configure payloads, including perishable experiments that will needed to be loaded into the NSS Enterprise just before launch.“Remember the game Tetris?” Zielinski asked. “That’s kind of how I envision the experiment modules inside the NSS Enterprise. They’re going to be different shapes and sizes, but they’re all going to fit very nicely and neatly together. Depending on the experiments that are going inside of them, the modules should be 3D printed and screwed together. The educators need to work with the engineers.”

The ability to 3D print a modular, satellite-style spacecraft will also act as a demonstrator for a new technology that Made In Space is developing for NASA, a process for 3D printing and assembling large-scale structures, like satellites, from the International Space Station. If Made In Space is able to 3D print the NSS Enterprise, which is estimated to measure 8 feet long and weigh 1,000 pounds, the firm may also be able to 3D print satellites aboard the International Space Station.

Made In Space Co-Founder and Chief Engineer Michael Snyder elaborated on how the EIS program relates to the activities of his firm, “Made In Space is currently exploring a number of methods for the microgravity additive manufacturing of structures that will ultimately be deployed in space from the ISS. While fabrication of the NSS Enterprise spacecraft will not take place aboard the ISS, the project will further demonstrate 3D printing as a viable method for manufacturing structures meant to survive the harsh environment of space.”

Flying the Orbiter

To get the NSS Enterprise into low-Earth orbit (LEO), EIS is currently in talks with private space companies to determine if the orbiter can be carried as a secondary payload on a commercial launch vehicle. If so, the spacecraft will be deployed into LEO and coast in free drift for most of its journey, though cold gas thrusters or gyros will be used to orient the orbiter as onboard experiments dictate, say to pick up video of the Earth for a geography class.

“One of the biggest issues, I think, is reentry,” explained Fred Becker, EIS chief engineer. Becker is a former NASA engineer who has worked on a dozen space missions, including the New Horizons Pluto mission. “A lot of that depends on the final design of the spacecraft, which is dependent on the type of launch vehicle we can get. We’re still trying to decide if the spacecraft will have more of a capsule shape or a space plane shape and whether or not it will feature a protective clamshell.”

A diagram depicting the mission of the NSS Enterprise. (Image courtesy of EIS.)

If EIS determines that the NSS Enterprise will more closely resemble a capsule, the physics of reentry are less complex. At a certain altitude, a parachute deploys and the capsule simply falls back to Earth. A spaceplane, on the other hand, would land more like the Space Shuttle, a longer, slower reentry with the spacecraft banking left and right before a parachute deploys and the NSS Enterprise coasts to its target on land.

For reentry, the spacecraft won’t be controlled from the ground, but through onboard sensing and a predetermined programming. Of course, the EIS crew, which is still scouting their mission control outpost, will be able to take over manual control if necessary, but Becker said that he hopes to program the spacecraft to execute a reentry program after it has been in orbit after a certain amount of time, at which point a kick motor will redirect it towards Earth.

EIS is working with partner company Terminal Velocity Aerospace, a subsidiary of satellite design company SpaceWorks Enterprises, to develop the ablative coating or clamshell that will protect the spacecraft during reentry. SpaceWorks, too, is in on the project and has helped the EIS team to draw up the preliminary physics calculations for the design of the NSS Enterprise.

Once EIS finds a launch provider and the $32 million necessary to begin construction on the spacecraft, SpaceWorks will finalize the designs and hand them off to Made In Space and asteroid mining company Deep Space Industries to build the orbiter.

Funding NewSpace Education

NSS Senior Vice President Bruce Pittman has watched the EIS program develop since it was adopted by the NSS early on. As the Chief System Engineer in the NASA Space Portal Office and the Emerging Space Office at the NASA Ames Research Center in Silicon Valley, Pittman has worked on countless NASA projects and played a key role in the commercialization of space.

About EIS, Pittman said, “The Enterprise In Space program is an exciting opportunity to simultaneously advance cutting edge technologies, while getting students from around the world engaged in STEAM and space education. The National Space Society is proud to have EIS as our flagship spaceflight program and we look forward to the remarkable results that will flow from its successful completion.”

Of course, to successfully complete its mission, EIS must obtain funding, which is a crucial variable in the ultimate design of the spacecraft, according to Alice Hoffman, EIS program manager. Hoffman has worked as project manager on such complex projects as the $6.2 billion expansion of Chicago O’Hare airport and the Chicago Bears’ $660 million Soldier Field.

 “What’s different about this is that our project schedule and our engineering are based on the ability to afford it,” Hoffman said. “Our project schedule and everything else is tied to receiving sufficient donations to go forward with certain aspects of the project. You always work backwards from the goals of the client, and our goal is to get kids interested in studying STEAM by showing them the future of what is possible in space and what sorts of jobs they might have in the NewSpace economy. That doesn’t have to be an 8-foot ship. It could be a smaller ship. The bigger ship gives us the ability to fly more serious experiments, and we want to do that, but you have to be realistic about what you can afford.”

The amount of funding the program can obtain, then, is factored into the ultimate design of the spacecraft, something that was taken into account when approaching SpaceWorks for guidance. “We had a couple of questions we wanted to ask SpaceWorks,” Hoffman explained. “If we only leave the NSS Enterpriseup for a week or two, do we need solar panels or can we just use a battery to power the spacecraft and the payloads? They concluded that we would need solar panels—that the mass ratio would be better for sustaining an average 50 watts of load for the ship and the payload if we had solar panels, even for a one- or two-week mission.”

She continued, “The second question we asked was what would be the total mass of the NSS Enterpriseto support various payload masses. We were shooting for 300 pounds of payload, and on its preliminary estimate, SpaceWorks suggested that it would be about 1,100 pounds.”

This is where the funding comes into play: “But the answer is a curve showing mass versus payload. So, if we were to get a free launch on a vehicle that couldn’t take a spacecraft as big as the one we’re talking about or we couldn’t afford the entire project, we could scale it down and take only 200 pounds of payload, which would result in an overall smaller mass spacecraft.”

Of course, the goal is to realize the full potential of the NSS Enterprise, making it large enough to include the university-level experiments. To do so, EIS is in fundraising mode. The group is looking to obtain $20 donations from individuals, earning them virtual crew memberships on the spacecraft, as well as large donations from charitable organizations and corporations.

While $20 will get your name flown on a chip stored on the NSS Enterprise, $30 million will give you naming rights to the NSS Enterprise (Sponsored by You) and $10 million will allow you to name the artificial intelligence or choose her voice or visage. More importantly, what better way to demonstrate a commitment to education that will be a game changer than by funding the foundation of NewSpace education?

Space 2.0

Rod PyleThe National Space Society (NSS) is pleased to announce the signing of a Memorandum of Understanding with space historian and author Rod Pyle (photo at right) to write a new book entitled Space 2.0. NSS plans to use the finished volume as a primary tool for outreach and STEM/STEAM educational efforts, as well as supporting the organization in the broader marketplace.

This new book will explore current efforts in space, and then, looking through the eyes of industry and government leaders, embark on a compelling narrative about the future development, exploration and settlement of the final frontier. Intended interviewees include Elon Musk, Jeff Bezos, Neil deGrasse Tyson, Buzz Aldrin, Andy Weir, Lori Garver, and Sir Richard Branson, among others.

Space 2.0 will be published in oversize format, lavishly illustrated with approximately 300 full-color images, and competitively priced to assure maximum accessibility. The book is currently scheduled to be published early next year by BenBella Books and distributed by IngramPerseus to an international audience.

For more information about how you can support this important new project, please contact Susan Holden Martin, MBA, J.D., at susan.martin@nss.org.

See also the NSS Review of Rod Pyle’s 2009 book Missions to the Moon.

The National Space Society Applauds Alan Stern Winning the NASA Distinguished Public Service Medal

The National Space Society congratulates Dr. Alan Stern on winning the NASA Distinguished Public Service Medal. This award is the highest honor that NASA can bestow. NSS has also awarded one of our highest honors to Dr. Stern, the NSS Wernher von Braun Award, which he received at our International Space Development Conference last May in San Juan, Puerto Rico.

Dr. Stern was Principal Investigator of NASA’s New Horizons mission to Pluto. “Leading New Horizons has been the greatest honor of my lifetime, but it’s important to recognize so many others who also contributed to the success of this mission,” said Stern. “I dedicate this award to the 2,500 men and women who worked so hard to build, launch, and fly New Horizons across the solar system to explore Pluto and its system of moons.”

Portrait of Dr. Alan Stern, associate vice president of the Space Science and Engineering Division at Southwest Research Institute (SwRI) and the Principal Investigator of NASA's New Horizons mission to Pluto. Image courtesy NASA/Bill Ingalls.
Portrait of Dr. Alan Stern, associate vice president of the Space Science and Engineering Division at Southwest Research Institute (SwRI) and the Principal Investigator of NASA’s New Horizons mission to Pluto. Image courtesy NASA/Bill Ingalls.

2016 August Home District Blitz

You are cordially invited to join the 2016 Annual ASD/NSS/SFF August Home District Blitz congressional action event. This event supports the 2016 Alliance for Space Development (ASD) annual campaign. You can expect topics being pushed to include items like support for the Space Exploration, Development, and Settlement Act (H.R. 4752), a Low Cost Access to Space Prize, full funding for Commercial Crew, and supporting a gapless transition from the ISS to commercial space stations. During the blitz, local groups will arrange to visit their Congressperson’s home district offices during the August recess. Signup is via http://goo.gl/forms/40pGqMuGcU1n6aiB2. Please sign up immediately and follow the directions on the NSS legislative page at www.nss.org/legislative to set up an appointment with your Representative and Senators.

ASD includes groups like the Space Frontier Foundation, the National Space Society, the Lifeboat Foundation, The Mars Foundation, The Mars Society, the Space Development Foundation, the Space Development Steering Committee, the Space Tourism Society, Students for the Exploration and Development of Space, Students on Capitol Hill, the Tea Party in Space, and the Texas Space Alliance. You can find out more about ASD at www.allianceforspacedevelopment.org.

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program “Enterprise In Space”

Enterprise In Space (EIS), an international program of the National Space Society (NSS), is excited to announce the signing of a Memorandum of Understanding (MOU) with the Smithsonian Science Education Center (SSEC), the only unit at the Smithsonian Institution that is solely dedicated to formal K-12 science education reform.

As a part of its mission to send a 3D printed spacecraft into low Earth orbit with more than 100 student experiments aboard, EIS has established a robust online educational platform, the EIS Academy, which includes several Enterprise Centers for Excellence, dedicated to hosting knowledge from experts in space science. The SSEC is dedicated to the establishment of effective science programs and professional learning experiences for all teachers and students. Together, the SSEC and EIS will support one another in developing educator and student experiences in Science, Technology, Engineering, Arts, and Mathematics (STEAM) that enhance awareness in the exploration and development of space and extend the reach of SSEC and EIS programs.

EIS and SSEC plan to collaborate on two projects dedicated to space education. The first is a mission patch design challenge in collaboration with the U.S. Department of Education to present at Space Day at the National Air and Space Museum, tentatively set to occur this summer. The second is the development of a space science summer course for the Smithsonian Science Education Academies for Teachers (SSEATs) that will enrich and enhance space education in the participating educators’ classrooms.

To provide teachers with powerful classroom tools and lessons, EIS, in conjunction with SSEC, will be creating a space science curriculum for leaders and learners that will be taught as a week-long SSEAT course. The course will use resources from the Smithsonian and its affiliates in the Washington, D.C. area, including access to museums, scientists, historians, and researchers at those facilities. Class lessons created by participating teachers will be shared further by being uploaded to the EIS Academy. The program will also include an online course preceding the summer Space Science Academy and post-academy activities for follow-up networking and teacher collaborations.

“The decision to collaborate with the Smithsonian Science Education Center was a natural one,” says Lynne Zielinski, EIS Education Program Manager and NSS Vice President of Public Affairs. “The Smithsonian has a prestigious reputation for its educational initiatives and will provide the ideal network and support necessary for bringing the EIS program to the public.”

“Space science topics are a timely and exciting subject area that motivates student learning,” said Carol O’Donnell, SSEC Director. “The EIS Academy offers a pathway for our SSEATs teachers to build long-lasting professional learning communities that will provide them with confidence and reinvigorate their enthusiasm while embracing cutting edge applications and best teaching practices.”

Both organizations wish to establish a sustainable relationship for space science education, launching their collaboration on a trajectory where the Sky is NOT the Limit!

Enterprise In Space Mission Profile

For more information about Enterprise in Space, see www.enterpriseinspace.org.

Program Manager Pete Worden to Present Interstellar Mission at International Space Development Conference

Pete Worden, former director of NASA Ames Research Center, will present “Starshot, Mission to Alpha Centauri,” at the Thursday (May 19) luncheon during the National Space Society’s International Space Development Conference®. NSS Governor Janet Ivey will emcee the luncheon which also features the presentation of the Heinlein award to Dr. Jerry Pournelle. Rich Pournelle of Nanoracks will receive the award for his father. The conference is open to the public and is set for May 18-22, 2016 at the Sheraton Puerto Rico Hotel and Casino in San Juan, Puerto Rico.

Breakthrough Starshot is a $100 million research and engineering program aiming to demonstrate proof of concept for light-propelled nanocrafts. These could fly at 20 percent of light speed and capture images of possible planets and other scientific data in our nearest star system, Alpha Centauri, just over 20 years after their launch.

The program will be led by Pete Worden, the former director of NASA AMES Research Center, and advised by a committee of world-class scientists and engineers. The board will consist of Stephen Hawking, Yuri Milner, and Mark Zuckerberg.

ISDC is the yearly conference of the National Space Society, a non-profit organization that has hosted the gathering since 1982. The event brings together leading managers, engineers, scientists, educators, and business people from civilian, military, commercial, entrepreneurial, and grassroots advocacy space sectors.

Online registration is currently open with a variety of options, from single-day registration passes to full conference registration with meals. Discounts are provided for youth, full-time students, seniors, and members of the National Space Society and its affiliates.

“We would like to invite local attendees interested in space to the annual conference of the world’s premier space public interest group,” stated Aggie Kobrin, the conference organizer and NSS board member.

For more information, visit http://isdc2016.nss.org.