National Space Society Congratulates Orbital ATK on a Successful Return to Flight for the Antares

On October 17, 2016, the upgraded Orbital ATK Antares rocket returned to flight following an October 14th, 2014 launch accident. The Antares is boosting a Cygnus cargo capsule to the International Space Station loaded with supplies and scientific equipment.

Dale Skran, NSS Executive Vice President said, “NSS applauds NASA’s support of multiple providers in the Commercial Resupply Services (CRS) program. The successful return to flight of the Antares/Cygnus at a time when the SpaceX Falcon 9 is grounded underscores the value of launch services provided by technologically independent sources.”


“Reliable access to space is critical to an expansive human future in space,” said Bruce Pittman, NSS Senior Vice President and Chief Operating Officer. “NASA’s initiative in requiring multiple competitive cargo providers to the ISS is a key step laying the groundwork for the NSS Roadmap to Space Settlement. Today that vision made another step forward.”

National Space Society Congratulates Blue Origin for Its Successful In-flight Escape Test of New Shepard

On October 5, 2016, for the fifth time, Blue Origin’s New Shepard rocket successfully flew to the edge of space and returned to its West Texas launch site intact. National Space Society Executive Vice President Dale Skran said, “Blue Origin is to be congratulated for putting together a systematic test program to demonstrate all the features of the New Shepard sub-orbital system. NSS members look forward to the first crewed flight of the New Shepard, and to sub-orbital tourist flights once New Shepard is operational. Additionally, New Shepard will provide expanded low-cost access to micro-gravity for researchers.”

Fifth Landing of New Shepard (Credit: Blue Origin)
Fifth Landing of New Shepard (Credit: Blue Origin)

Blue Origin again made history by successfully demonstrating the operation of the capsule’s in-flight escape system. About 45 seconds into the flight, the 70,000 pounds of thrust New Shepard solid fuel escape motor pushed the capsule away from the booster and toward a parachute assisted landing in Texas.

New Shepard Crew Capsule Landing (Credit: Blue Origin)
New Shepard Crew Capsule Landing (Credit: Blue Origin)

“Blue Origin’s successful capsule escape demonstration represents a material step toward a fully re-usable sub-orbital vehicle,” said Bruce Pittman, NSS Senior Vice President and Senior Operating Officer. “We endorse Blue Origin and Jeff Bezos’ vision of ‘millions of people living and working in space’ – this is the heart and soul of the NSS Roadmap to Space Settlement. Today that vision made another significant step forward.” (See

In a remarkable achievement, the New Shepard booster was not destroyed by the firing of the escape motor, and continued a nominal flight first to the edge of space and then back to the launch site. Blue Origin has announced that following this fifth test flight, both the capsule and the booster will be retired and put on public display. (See a replay of the 1.25-hour flight webcast.)

Jeff Bezos, Blue Origin CEO said, “Like Mercury, Apollo, and Soyuz, New Shepard has an escape system that can quickly propel the crew capsule to safety if a problem is detected with the booster. Our escape system, however, is configured differently from those earlier designs.” The New Shepard is a “pusher” rather than the old tower “pull” system used by Apollo, allowing the escape system to be re-used. Bezos continued, stating that “Expending an escape motor on every flight drives up costs significantly. Further, the jettison operation is itself safety critical. Failure to jettison the tower is catastrophic.”

National Space Society Space Settlement Campaign Supports Elon Musk’s Mars Settlement Plans

At today’s meeting of the International Astronautical Congress (IAC) in Guadalajara, Mexico, Elon Musk, CEO of Space X, announced his bold plan to build a city on Mars. For over 40 years the National Space Society has led advocacy for space settlement. According to Mark Hopkins, economist and Chair of the Executive Committee of the National Space Society, “The vast majority of the resources of our solar system lie in space rather than on the Earth. By settling Mars and other locations in space we can overcome the resource limits of Earth leading to a hopeful, prosperous future for all of humanity.”

During the talk Musk detailed the Interplanetary Transport System (ITS) for the first time. The first stage of the ITS towers 77.5 meters with a diameter of 12 meters and uses 42 Raptor engines to provide a total of 28 million lbs of thrust. The second stage is 49.5 meters long, 17 m in diameter, uses 9 Raptor engines, and comes in both a crew/cargo model and a tanker model. Musk’s plans are based on four key approaches: full reusability of all components, refueling in orbit around Earth, refueling on Mars with locally produced propellant, and using a rocket fuel (methane/oxygen) that can be easily manufactured on Mars. Musk envisions that the eventual cost of a ticket to Mars will be in the $100K-$200K U.S. dollars range, allowing ordinary people to eventually travel to Mars.

SpacX ITS launch
SpacX ITS launch
SpaceX ITS reusable first stage return
SpaceX ITS reusable first stage return
SpaceX ITS refueling in orbit (image: SpaceX)
SpaceX ITS refueling in orbit
SpaceX ITS approaching Mars
SpaceX ITS approaching Mars
SpaceX ITS nearing Mars
SpaceX ITS final approach to Mars
SpaceX ITS Mars entry
SpaceX ITS Mars entry
SpaceX Raptor engine test
SpaceX Raptor engine test
SpaceX has already built an ITS prototype composite fuel tank
SpaceX has already built a prototype ITS composite fuel tank

What has been a bold vision of the future for humanity is now becoming reality. Humanity has begun the first concrete steps towards space settlement. The next decade will be one of the most pivotal in human history. Today we are beginning the journey to becoming a multiplanetary species.

In recognition of these momentous developments taking place the National Space Society is convening the first “Space Settlement Summit” in January to bring together leading people, companies and organizations that are making space settlement a reality. Participation in this event will be by invitation only and limited to entrepreneurs, scientists, engineers, venture capitalists, and thought leaders deeply involved in making space settlement a reality. The objective of the event will be to show the synergistic in-space ecosystem that is emerging; to facilitate a convergence of interests and opportunities among the key players; and to identify critical issues along the path to space settlement. We are at the dawn of a new era for humanity and the National Space Society is continuing its role as the leading voice for space settlement.

Musk’s reveal of his Mars colonization plan follows the announcement September 12th of the Blue Origin “New Glenn” heavy-lift vehicle by Jeff Bezos. The New Glenn is 7 meters in diameter and comes in both a two stage and a three stage version. The reusable first stage is powered by seven BE-4 engines fueled by liquid natural gas and liquid oxygen, providing 3.85 million pounds of thrust. The second stage uses a single BE-4 engine, and the optional third stage a single liquid hydrogen-oxygen BE-3 engine, the same engine used in the flight proven reusable New Shepard sub-orbital vehicle.

“The New Glenn is a major step forward for commercial space,” said Dale Skran, NSS Executive Vice President. “With the SpaceX ITS and Falcon Heavy, the United Launch Alliance Vulcan, and the Blue Origin New Glenn operational, the U.S. will have four domestic options for commercial medium to heavy lift. This will allow NASA to make use of commercial heavy lift services with greater confidence than if only a single operator existed.”

The U.S National Space Policy of 2010 states “To promote a robust domestic commercial space industry, departments and agencies shall: Purchase and use commercial space capabilities and services to the maximum practical extent when such capabilities and services are available in the marketplace and meet United States Government requirements.”

“NASA ought to welcome the usage of the ITS, Vulcan, the New Glenn and the Falcon Heavy in future NASA planning,” said Skran. “NASA can only benefit from the existence of multiple commercial medium to heavy lift providers with re-usable first stages that offer the possibility of significant cost reductions.”

Milestone 2 on the NSS Space Settlement Roadmap is titled “Higher Commercial Launch Rates and Lower Cost to Orbit” ( Future NASA usage of commercially available partially or fully re-usable medium to heavy lift vehicles will be critical to achieving this milestone.

“Competition like that seen between Blue Origin and SpaceX is key to rapid progress in space,” said Bruce Pittman, NSS Senior Vice President. “Elon just presented a plan for settling the solar system in this century that is realistic and affordable. In my paper, ‘A Pathway to a Thriving Commercial Space Economy’ at IAC, I also laid out a path forward to a thriving new economy in space that produces new opportunities for all.”

Musk’s plan’s address MILESTONES 15 (“Logistics System”), 16 (“Base”), and 17 (“A True Martian Settlement”) in the evolving NSS Space Settlement Roadmap (see NSS supports the exploration, development, and settlement of space, including free space, the Moon, asteroids, and other locations in addition to Mars.

NSS has been pushing hard via legislative outreach in cooperation with the Alliance for Space Development to make space development and settlement part of the objectives that guide NASA. In March 2016 Rep. Dana Rohrabacher introduced H.R.4752 the “Space Exploration, Development, and Settlement Act (see to make development and settlement of space part of the fundamental law governing NASA.

More recently, on September 21, 2016, the Senate Commerce, Science, and Transportation Committee marked up S.3346, the NASA Transition Act of 2016. This bi-partisan Bill, co-sponsored by Senators Cruz, Nelson, Rubio, Peters, Wicker, and Udall, contains the following ground-breaking statement:

Section 202(a) of the National Aeronautics and Space Administration Authorization Act of 2010 (42 U.S.C. 18312(a)) is amended to read as follows:
“(a) LONG-TERM GOALS—The long-term goals of the human space flight and exploration efforts of NASA shall be—
“(1) to expand permanent human presence beyond low-Earth orbit and to do so, where practical, in a manner involving international, academic, and industry partners; and
“(2) the peaceful settlement of a location in space or on another celestial body and a thriving space economy in the 21st century.”

The entire S.3346 “NASA Transition Act of 2016” can be found at: NSS applauds the Senate for taking this forward-looking position in favor of space development and settlement, but much remains to be done to make space development and settlement a reality. Join us in the fight for a better future at

Deep Space Industries Announces First Commercial Interplanetary Mining Mission

Deep Space Industries announced today its plans to fly the world’s first commercial interplanetary mining mission. Prospector-1™ will fly to and rendezvous with a near-Earth asteroid, and investigate the object to determine its value as a source of space resources. This mission is an important step in the company’s overall plans to harvest and supply in-space resources to support the growing space economy.

“Deep Space Industries has worked diligently to get to this point, and now we can say with confidence that we have the right technology, the right team and the right plan to execute this historic mission,” said Rick Tumlinson, chairman of the board and co-founder of Deep Space Industries. “Building on our Prospector-X mission, Prospector-1 will be the next step on our way to harvesting asteroid resources.”

Prospector 1
Click image for larger version

Recently, Deep Space Industries and its partner, the government of Luxembourg, announced plans to build and fly Prospector-X™, an experimental mission to low-Earth orbit that will test key technologies needed for low-cost exploration spacecraft. This precursor mission is scheduled to launch in 2017. Then, before the end of this decade, Prospector-1 will travel beyond Earth’s orbit to begin the first space mining exploration mission.

“Our Prospector missions will usher in a new era of low cost space exploration” said Grant Bonin, chief engineer at DSI. “We are developing Prospector both for our own asteroid mining ambitions, but also to bring an extremely low-cost, yet high-performance exploration spacecraft to the market. At a tiny fraction of what traditional custom-built space probes cost, the Prospector platform has the versatility and ruggedness of design to become the new standard for low cost space exploration.”

Prospector-1 is a small spacecraft (50 kg when fueled) that strikes the ideal balance between cost and performance. In addition to the radiation-tolerant payloads and avionics, all DSI spacecraft use the Comet™ water propulsion system, which expels superheated water vapor to generate thrust. Water will be the first asteroid mining product, so the ability to use water as propellant will provide future DSI spacecraft with the ability to refuel in space.

“During the next decade, we will begin the harvest of space resources from asteroids,” said Daniel Faber, CEO at Deep Space Industries. “We are changing the paradigm of business operations in space, from one where our customers carry everything with them, to one in which the supplies they need are waiting for them when they get there.”

The destination asteroid will be chosen from a group of top candidates selected by the world renowned team of asteroid experts at Deep Space Industries. When it arrives at the target, the Prospector-1 spacecraft will map the surface and subsurface of the asteroid, taking visual and infrared imagery and mapping overall water content, down to approximately meter-level depth. When this initial science campaign is complete, Prospector-1 will use its water thrusters to attempt touchdown on the asteroid, measuring the target’s geophysical and geotechnical characteristics.

“The ability to locate, travel to, and analyze potentially rich supplies of space resources is critical to our plans,” continued Faber. “This means not just looking at the target, but actually making contact.”

Along with customer missions already in progress, such as the cluster of small satellites being built by DSI for HawkEye 360, the Prospector missions will demonstrate the company’s simple, low-cost, but high-performance approach to space exploration. The Prospector platform is now available to government and commercial explorers interested in developing sophisticated, yet low-cost missions of their own.

“Prospector-1 is not only the first commercial interplanetary mission, it is also an important milestone in our quest to open the frontier,” said Tumlinson. “By learning to ‘live off the land’ in space, Deep Space Industries is ushering in a new era of unlimited economic expansion.”

More detailed information about the Prospector program, including the Prospector-X (eXperimental) and Prospector-1 missions, and the DSI technologies that are making these missions possible, can be found on the company’s website:

National Space Society Applauds SpaceX Launch of IDA to the ISS and successful RTLS of the Falcon 9 First Stage

With a successful launch on July 18 at 12:45 AM EST, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, SpaceX achieved several dramatic milestones on the Commercial Resupply Services 9 mission (CRS-9). In addition to supplies and experiments in the pressurized part of the Dragon, an unpressurized “trunk” houses the 1,028 lb (467 kilogram) International Docking Adaptor (IDA), manufactured by Boeing. The IDA, once attached to the International Space Station (ISS) will be the connecting point for Boeing’s CST-100 Starliner and SpaceX’s Crewed Dragon 2 spacecraft as they bring American astronauts to the ISS on American-built and operated vehicles for the first time since the end of the Space Shuttle program.

Experiments being lofted to the ISS by CRS-9 include a Biomolecule Sequencer that will attempt for the first time DNA sequencing in micro-gravity and a new type of heat exchanger being developed by NASA. CASIS/ISS National Laboratory projects include OsteoOmics, which will use magnetic levitation to increase our understanding of the bone loss that results from osteoporosis, and HeartCells, a study of the effects of microgravity on the human heart, which could improve treatments for heart disease on Earth.

“The CRS-9 delivery of IDA is on the critical path to our future in space,” said Dale Skran, NSS Executive Vice President. “SpaceX continues to break new ground in lowering the cost of going into space, and the return to launch site landing of the first stage is key to eventually lowering the cost of spaceflight. With the successful installation of IDA on the ISS, America will be ready for the next epoch of human spaceflight based on commercial vehicles.”

International Docking Adaptor
International Docking Adaptor (IDA) ready for installation in the Dragon trunk [courtesy NASA]
On June 19, 2016 Blue Origin re-used its sub-orbital New Shepard booster on a flight to the Karman line (the edge of space) for the fourth time and returned the rocket to its launch site for further re-use while demonstrating the reliability of the capsule parachute system in the case of a failed parachute. “Competition like that seen between Blue Origin and SpaceX is the key to rapid progress in space,” said Bruce Pittman, NSS Senior Vice President. “Today’s launch of IDA to the ISS and the successful RTLS [return to launch site] landing is a direct result of the competitive, commercial nature of CRS and Commercial Crew, and NSS advocates extending these types of programs into cis-lunar space.”

Lowering the cost of access to space is fundamental to NSS’s vision of our future there (see and today’s events have brought that future materially closer.

Videos of the SpaceX Reusable Rocket Program

Below are two 5-minute videos about the reusable rocket development program of SpaceX. The first video shows the live coverage of the first successful landing on an autonomous spaceport drone ship, with the tremendous excitement of the SpaceX team very audible in the background. The second video is a cool compilation of SpaceX reusable rocket testing over the previous four years.

The Billionaire’s Race to Colonize Space: Blue Origin and SpaceX

Elon Musk has made it clear that his mission with SpaceX is to colonize Mars and to help humanity become a multi-planet species.

Jeff Bezos states that Blue Origin is “working hard to bring closer the day when millions of people can live and work in space.”

See the interesting article on this subject by Trevor Nace on The Next Web Insider.

Space Invaders: The Mojave Entrepreneurs

From Dale Skran, NSS Executive Vice President:

A lot of things are happening related to space that don’t get covered by the mainstream media. This 13-minute video produced by the Economist magazine travels to Mojave Spaceport in California where young engineers at space startups are building the future.  Companies featured include XCOR, Virgin Galactic, and Masten Aerospace. The video includes interesting footage I’ve never seen before. Ad Astra!

National Space Society Congratulates Blue Origin on First Reflight of New Shepard Rocket

On January 22, 2016, two months after Blue Origin’s New Shepard rocket first successfully flew to the edge of space and returned to its launch site intact, Blue Origin again made history by re-flying the same vehicle. On this second launch the New Shepard passed the Karman line that defines the boundary of space, reaching an altitude of 333,582 ft before a spot-on landing in West Texas. This marks the first time that a re-usable vertical take-off/vertical landing vehicle has reached space and returned to its launch site and then done the same thing again using the same vehicle. Both the New Shepard cargo/crew capsule and booster were re-used on this uncrewed test flight.

Jeff Bezos reported that “The team replaced the crew capsule parachutes, replaced the pyro igniters, conducted functional and avionics checkouts, and made several software improvements, including one noteworthy one.” This major change allowed the New Shepard to land a bit off-target while providing better resistance to possible cross-winds. Bezos added, “Though wings and parachutes have their adherents and their advantages, I’m a huge fan of rocket-powered vertical landing. Why? Because—to achieve our vision of millions of people living and working in space—we will need to build very large rocket boosters. And the vertical landing architecture scales extraordinarily well.”

Dale Skran, NSS Executive Vice President said, “NSS members look forward to future crewed flights of the New Shepard and an exciting future of operational sub-orbital tourism.”

“Blue Origin’s successful re-use of the New Shepard booster after reaching the edge of space represents a major step toward a fully re-usable sub-orbital vehicle,” said Bruce Pittman, NSS Senior Vice President and Chief Operating Officer. “We endorse Blue Origin and Jeff Bezos’ vision of ‘millions of people living and working in space’—this is the heart and soul of the NSS Roadmap to Space Settlement (get a free PDF of this document at Today that vision made a significant step closer to realization.”