2014 Legislative Blitzes: Washingon DC in February, Home Districts in August

Washington Legislative Blitz February 23-25, 2014

The National Space Society will be participating in the Space Exploration Alliance (SEA) 2014 legislative blitz in Washington DC in February. NSS encourages all members to sign up for and participate in the SEA Blitz as described at www.spaceexplorationalliance.org/blitz/ from Rick Zucker of Explore Mars. Dale Skran, Deputy Chair of the NSS Policy Committee will be coordinating NSS members as needed. Please send him a short email message at dalelskranllc@gmail.com indicating you plan to participate when you sign for the Blitz.

The Space Exploration Alliance includes groups ranging from NSS and Explore Mars to AIAA, the Moon Society, the Mars Society, the Planetary Society, the National Society of Black Engineers, SEDS, and Buzz Aldrin’s ShareSpace Foundation. The major goal of the SEA blitz from an NSS perspective will be to provide as much support for the NASA budget as possible during these difficult budgetary times. Now is the time to stand up for space and be counted. We look forward to seeing you in Washington, DC, February 23-25, 2014.

Home District Legislative Blitz August 2014

If you live too far from Washington to participate in the 2014 SEA Blitz, NSS is currently planning on organizing a “home district” blitz later in the year, probably during August when Congress is in recess and members of Congress are in their home districts. If you are interested in participating in the home district visits please send an email to Dale Skran at dalelskranllc@gmail.com. This email should contain your contact information. By doing so, you are giving permission for a statewide coordinator to contact you for purposes of organizing home district visits.

Additionally, we are seeking at least one volunteer to coordinate visits in each state. If you are interested, please send an email to that effect to Dale Skran at the email address above. We especially encourage multiple volunteers for larger states such as California and Texas. Thanks for your support.

Dale Skran
Deputy Chair, NSS Policy Committee

NSS affiliates with Space Exploration Asia


“Bring space to life by bringing life to space.” – Howard Bloom


Space Exploration Asia exists to catalyze life’s third great leap.

  • Life’s first great leap was the jump from the comfort of the sea to the hostile barrens of the land. That move resulted in over fifty million new ways to make a living—over fifty million new species of plants, animals and living things.
  • Life’s second great leap came when dinosaurs took to the utter emptiness of the skies and became birds. That leap produced so many new ways to make a living that there are now twice as many species of birds as there are of us land-crawling mammals.
  • Life’s third great leap is the eight and a half minute jump beyond the pull of Earth’s gravity, the eight and a half minute climb beyond the skies, the climb to a front stoop that looks out on an entire universe, a cosmos waiting to be turned from desert to greenery. For 3.85 billion years, life has eagerly thrust itself. We have an obligation on behalf of life and its diversity. We are the only species able to take life beyond the atmosphere, beyond the clutch of gravity.


Space Exploration Asia’s job is to stimulate and inspire. Our task is to gather the most uplifting and expert dreams of the global space community and to present them to the public. Our goal is to build the kind of infrastructure on which all of humankind’s impossible achievements have been built: the infrastructure of desire and the infrastructure of vision.

Space Exploration Asia aims to engage with governments in Asia and the globe, providing advisory services and linking agencies with the right people, the people with the greatest expertise in space.

We also encourage and advise universities and colleges to develop curriculum and faculties on space exploration and space technology. We help achieve this by providing teachers and lectures with more exposure, networks, tools and resources.

We engage with corporations to introduce and explore the facets of space exploration as a rich, untapped business opportunity

We thank the National Space Society for opening its vast international network to us. Space Exploration Asia exists is to take the National Space Society’s vision to Asia…and to all of humanity.


SEA-sonja2Sonia A. Mahendran, CEO, Space Exploration Asia

Sonia A. Mahendran, Coordinator of the International Advisory Board of the National Space Society, is CEO of Space Exploration Asia in Kuala Lumpur, Malaysia. Mahendran co-founded and was CEO of Asia World Summit, the events company that brought Bill Clinton to Malaysia. She has also been a Director at Malaysia’s leading independent private think tank, the Asian Strategic Leadership Institute, and a groundbreaking executive in the Asian Pacific and Middle Eastern operations at British global summit promotion firm Marcus Evans.

In 2008, Mahendran and National Space Society board member Howard Bloom tested the Asian space waters by initiating a space-industry conference in Bangalore co-sponsored by India’s NASA — the Indian Satellite Research Organisation (ISRO) — and the Confederation of Indian Industries (CII), India’s most powerful trade organization. The event was SpaceBiz 2008.

Sonia’s signature Corporate Governance Summits have featured the likes of Mahathir Mohamad, Prime Minister of Malaysia for 22 years; Raja Nazrin Shah, Crown Prince of Malaysia’s second largest state, Perak; Lim Eng Guan Chief Minister of Malaysia’s economically crucial Penang State; and Michael Hershman, Co-Founder of Transparency International.

Sonia’s goal for the National Space Society International Advisory Board is to recruit cabinet level members from Asia, Africa, and South America, members who can expand the scope of global National Space Society projects like the Kalam-NSS Energy Initiative, the partnership between the NSS and the eleventh president of India, Dr. A.P.J. Kalam, an initiative designed to put space solar power on the priority list of the G8 and G20 nations.

Sonia collaborated with the Mayor of Kuala Lumpur on the Asian Metrocity Summit 2010 which brought Mayors from all around Asia and Europe to discuss sustainability.


Origami used to design ultra-compact solar arrays

BYU engineers have teamed up with a world-renowned origami expert to solve one of space exploration’s greatest (and most ironic) problems: lack of space.

Working with NASA’s Jet Propulsion Laboratory, a team of mechanical engineering students and faculty have designed a solar array that can be tightly compacted for launch and then deployed in space to generate power for space stations or satellites.

Applying origami principles on rigid silicon solar panels – a material considerably thicker than the paper used for the traditional Japanese art – the BYU-conceived solar array would unfold to nearly 10 times its stored size.

“It’s expensive and difficult to get things into space; you’re very constrained in space,” said BYU professor and research team leader Larry Howell. “With origami you can make it compact for launch and then as you get into space it can deploy and be large.”

The current project, detailed in the November issue of the Journal of Mechanical Design, is propelled by collaboration between BYU, NASA and origami expert Robert Lang. Howell reached out to Lang as part of landing a $2 million National Science Foundation grant in 2012 to explore the combination of origami and compliant mechanisms. (Joint-less, elastic structures that use flexibility to create movement.)

The particular solar array developed by the group can be folded tightly down to a diameter of 2.7 meters and unfolded to its full size of 25 meters across. The goal is to create an array that can produce 250 kilowatts of power. Currently, the International Space Station has eight solar arrays that generate 84 kilowatts of energy.

Howell said origami through compliant mechanisms is a perfect fit for space exploration: It is low cost and the materials can handle harsh solar environments.

“Space is a great place for a solar panel because you don’t have to worry about nighttime and there are no clouds and no weather,” he said. “Origami could also be used for antennas, solar sails and even expandable nets used to catch asteroids.”

Hubble Space Telescope Sees Evidence of Water Vapor Venting off Jovian Moon Europa

NASA’s Hubble Space Telescope has observed water vapor above the frigid south polar region of Jupiter’s moon Europa, providing the first strong evidence of water plumes erupting off the moon’s surface.

Previous scientific findings from other sources already point to the existence of an ocean located under Europa’s icy crust. Researchers are not yet certain whether the detected water vapor is generated by water plumes erupting on the surface, but they are confident this is the most likely explanation.

This graphic shows the location of water vapor detected over Europa’s south pole that provides the first strong evidence of water plumes erupting off Europa’s surface, in observations taken by NASA’s Hubble Space Telescope in December 2012. Hubble didn’t photograph plumes, but spectroscopically detected auroral emissions from oxygen and hydrogen. The aurora is powered by Jupiter’s magnetic field. This is only the second moon in the solar system found ejecting water vapor from the frigid surface. The image of Europa is derived from a global surface map generated from combined NASA Voyager and Galileo space probe observations.

Should further observations support the finding, it would make Europa the second moon in the solar system known to have water vapor plumes. The findings were published in the Thursday, Dec. 12, online issue of Science Express, and reported at the meeting of the American Geophysical Union in San Francisco.

“By far the simplest explanation for this water vapor is that it erupted from plumes on the surface of Europa,” said lead author Lorenz Roth of Southwest Research Institute in San Antonio, Texas. “If those plumes are connected with the subsurface water ocean we are confident exists under Europa’s crust, then this means that future investigations can directly investigate the chemical makeup of Europa’s potentially habitable environment without drilling through layers of ice. And that is tremendously exciting.”

In 2005, NASA’s Cassini orbiter detected jets of water vapor and dust spewing off the surface of Saturn’s moon Enceladus. Although ice and dust particles subsequently have been found in the Enceladus plumes, only water vapor gases have been measured at Europa so far.

Hubble’s spectroscopic observations provided the evidence for Europa plumes in December 2012. Time sampling of auroral emissions measured by Hubble’s imaging spectrograph enabled the researchers to distinguish between features created by Jupiter’s magnetospheric particles and local enhancements of gas, and to also rule out more exotic explanations such as serendipitously observing a rare meteorite impact. The imaging spectrograph detected faint ultraviolet light from an aurora, powered by Jupiter’s intense magnetic field, near the moon’s south pole. Atomic oxygen and hydrogen produce a variable auroral glow and leave a telltale sign that they are products of water molecules being broken apart by electrons along magnetic field lines.

“We pushed Hubble to its limits to see this very faint emission. These could be stealth plumes, because they might be tenuous and difficult to observe in the visible light,” said Joachim Saur of the University of Cologne in Germany. Saur, who is principal investigator of the Hubble observation campaign, co-wrote the paper with Roth. Roth suggested long cracks on Europa’s surface, known as lineae, might be venting water vapor into space. Cassini has seen similar fissures that host Enceladus’ jets.

The Hubble team found that the intensity of Europa’s plumes, like that Enceladus’s plumes, varies with the moon’s orbital position. Active jets have been seen only when Europa is farthest from Jupiter. But the researchers could not detect any sign of venting when Europa is closer to Jupiter.

One explanation for the variability is these lineae experience more stress as gravitational tidal forces push and pull on the moon and open vents at larger distances from Jupiter. The vents are narrowed or closed when the moon is closest to the gas giant planet.

“The apparent plume variability supports a key prediction that Europa should tidally flex by a significant amount if it has a subsurface ocean,” said Kurt Retherford, also of Southwest Research Institute.

Europa’s and Enceladus’ plumes have remarkably similar abundances of water vapor. Because Europa has roughly 12 times more gravitational pull than Enceladus, the vapor, whose temperature is measured at minus 40 degrees Celsius, does not escape into space as it does at Enceladus. Instead, it falls back onto the surface after reaching an altitude of 125 miles, according to the Hubble measurements. This could leave bright surface features near the moon’s south polar region, the researchers hypothesize.

“If confirmed, this new observation once again shows the power of the Hubble Space Telescope to explore and opens a new chapter in our search for potentially habitable environments in our solar system,” said John Grunsfeld, an astronaut who participated in Hubble servicing missions and now serves as NASA’s associate administrator for science in Washington, D.C. “The effort and risk we took to upgrade and repair the Hubble becomes all the more worthwhile when we learn about exciting discoveries like this one from Europa.”

This is an artist’s concept of a plume of water vapor thought to be ejected off of the frigid, icy surface of the Jovian moon Europa, located 500 million miles from the Sun. Hubble Space Telescope spectroscopic measurements lead scientists to calculate that the plume rises to an altitude of 125 miles and then probably rains frost back onto the moon’s surface. Previous findings already point to a subsurface ocean under Europa’s icy crust.

National Space Society Congratulates SpaceX on First Successful GEO Transfer Mission

The Washington DC-based National Space Society (NSS) congratulates Space Exploration Technologies (SpaceX) on the successful launch of the SES-8 telecommunications satellite. It was launched Tuesday, December 3, 2013 from Space Launch Complex 40 (SLC-40) at the Cape Canaveral Air Force Station at 5:41 PM Eastern Time.

The SES-8 is a GEOStar-2 satellite built by Orbital Sciences. The hybrid Ku- and Ka-band spacecraft weighs 3,138 kg (6,918 lbs) and will provide communications coverage of the South Asia and Asia Pacific regions.

This is the first mission to geo-synchronous orbit for SpaceX, and the second flight of the Falcon 9 v1.1. The upgraded version of the Falcon 9 has 60% more thrust than the Falcon 9 v1.0, and can loft payloads of up to 4,950 kg (10,690 lb) to geostationary transfer orbit.

Bruce Pittman, NSS Senior Vice President, said, “This milestone injects a new US competitor into the international commercial satcom launch market, and is an important step toward lowering the cost of access to space, which in turn will help drive space development and settlement.”

This flight of the Falcon v1.1 represents a major step forward commercially for SpaceX, and also demonstrates progress toward the certification of the Falcon 9 for Department of Defense payloads. Critical to geostationary transfer missions, for the first time the upgraded Falcon 9 second stage re-ignited for a 5-minutes 20-seconds burn to put the SES-8 into the correct orbit. SES is the world’s second largest telecommunications satellite company, fielding 54 geostationary satellites.

SpaceX Successfully Completes First Mission to Geostationary Transfer Orbit

Space Exploration Technologies (SpaceX) has successfully completed its first geostationary transfer mission, delivering an SES-8 satellite to its targeted 295 x 80,000 km orbit.  Falcon 9 executed a picture-perfect flight, meeting 100% of mission objectives.

Falcon 9 lifted off from Space Launch Complex 40 (SLC-40) at 5:41 PM Eastern Time on December 3.  Approximately 185 seconds into flight, Falcon 9’s second stage’s single Merlin vacuum engine ignited to begin a five minute, 20 second burn that delivered the SES-8 satellite into its parking orbit. Eighteen minutes after injection into the parking orbit, the second stage engine relit for just over one minute to carry the SES-8 satellite to its final geostationary transfer orbit.  The restart of the Falcon 9 second stage is a requirement for all geostationary transfer missions.

“The successful insertion of the SES-8 satellite confirms the upgraded Falcon 9 launch vehicle delivers to the industry’s highest performance standards,” said Elon Musk, CEO and Chief Designer of SpaceX.   “As always, SpaceX remains committed to delivering the safest, most reliable launch vehicles on the market today.  We appreciate SES’s early confidence in SpaceX and look forward to launching additional SES satellites in the years to come.”

The mission marked SpaceX’s first commercial launch from its central Florida launch pad and the first commercial flight from the Cape Canaveral Air Force Station in over four years.  SpaceX has nearly 50 launches on manifest, of which over 60% are for commercial customers.

This launch also marks the second of three certification flights needed to certify the Falcon 9 to fly missions for the U.S. Air Force under the Evolved Expendable Launch Vehicle (EELV) program. When Falcon 9 is certified, SpaceX will be eligible to compete for all National Security Space missions.

Roadmap to Space Settlement 2014 International Student Art Contest

The National Space Society (NSS) is looking for student artists to create illustrations for the NSS Roadmap to Space Settlement. Submitted artwork should REALISTICALLY illustrate one of this year’s two themes: Asteroid Settlement or Building a Space Settlement.

1. Asteroid Settlement

(Milestone 18)

“Asteroid Settlement” challenges students to design a space settlement on or in an asteroid or several asteroids. Asteroids can be located in many places in our solar system and can have many different types of orbits. Some have near-planet orbits, like those that regularly pass by Earth or Mars. Others stay in the asteroid belt. Asteroids also offer valuable resources and can be used as mining installations. To learn more about asteroids click here.

2. Building a Space Settlement

(Milestones 13, 17, 18, or 19)

“Building a Settlement” challenges students to think about how humans will build either orbital space settlements or surface settlements that are on or beneath the surface of the Moon or Mars. What tools and equipment will be used? How will astronauts do the physical building? Will scaffolding be needed? Then, students should take their ideas and interpret them into original works of visual art that depict the actual construction of their settlement.

All full-time students at any grade level between the ages of 13 and 25 are eligible. The deadline for submissions is March 16, 2014. Original artwork from entries submitted to the NSS/NASA Space Settlement Design Contest (including previous years) is especially encouraged.

See our contest web pages for information about prizes and submission requirements. Below is an example of art work that illustrates both of this year’s themes in a single image.

Bryan Versteeg, spacehabs.com
Image: Bryan Versteeg, spacehabs.com